Coach	Supervisor(s)	Funding
Yufei Xie	Vladimir Galvita	FWO G032920N
Juan Mirena Seguias	Hilde Poelman	

Identifying active sites for CO₂ methanation in Ni-based catalysts

Aim

Synthesize and characterize Ni-based catalysts with different Ni particle size to assess the link with conversion and selectivity for CO_2 methanation. Figure out the structure of Ni which is most active and selective to CH_4 combining controlled trials and characterizations.

Justification

Today's challenge for the chemical industry is ensuring sustainable supplies of fuels, chemicals and materials for a growing global population, while limiting global warming and climate change. Controlling the atmospheric CO_2 level forms an inseparable part of this evolution. CO_2 can also be hydrogenated into chemicals or fuels such as methane, formaldehyde, dimethyl ether, formic acid, methanol and other alcohols. The activation of CO_2 and its hydrogenation to hydrocarbons or alcohols are challenging because CO_2 is very stable, requesting co-reagents and efficient catalysts. Ni-based catalysts are outstanding to convert CO_2 into CH_4 for their low cost and relatively high activity. To further improve Ni-based catalysts to meet industrial requirement, fine control and thorough characterization of the Ni structure are needed to identify the most active and selective site.

Program

- 1. Literature survey on Ni-based catalysts for CO₂ methanation.
- 2. Synthesis of Ni-based catalysts with different particle size using different methods (e.g. incipient wetness impregnation, deposition-precipitation...)
- 3. Catalytic performance test of these catalysts with different particle size.
- 4. Using TAP reactor to gain insight in the intermediates, in combination with in situ IR to reveal the reaction pathway.
- 5. Characterization of the structure of Ni particles and identify different active sites.

