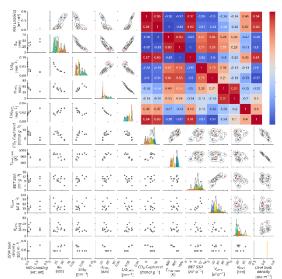
Coach Dr. Lukas Buelens	Supervisor(s) Prof. Vladimir Galvita	Funding
	Prof. Kevin Van Geem	
	Dr. Hilde Poelman	

Data-driven optimization of NH₃ decomposition catalysts


Aim

The aim of this project is to make use of literature data for the design and synthesis of new highperformance NH_3 decomposition catalysts with consecutive testing.

Justification

Ammonia is the second most produced chemical globally, with around 88% of its demand stemming from its critical role in fertilizer production. As the world shifts towards decarbonizing energy systems, ammonia decomposition emerges as a highly promising method for on-site, on-demand hydrogen generation. When produced using hydrogen with a very low carbon footprint, ammonia can serve as an efficient carrier and source of carbon-free hydrogen, further supporting the global energy transition towards cleaner and more sustainable solutions.

Advantages of ammonia include (i) its high volumetric and gravimetric hydrogen density¹, (ii) the relatively low minimum energy penalty of 16% required for its decomposition², and (iii) the very low levels of contaminants in the hydrogen product³ compared to methane/methanol-reforming, reducing the energetic and economic burden of downstream separation.

Example of correlation analysis for the investigation of Synthesis-Property-Performance relationships.

Program

- Literature survey to establish a database for synthesis-property-performance correlation analyses of NH₃ decomposition catalysts.
- Correlation analyses and identification of the main drivers for catalyst performance using data science packages available for Python.
- Formulation of next-generation NH₃ decomposition catalysts based on correlation analyses.
- Synthesis, characterization and testing of next-generation NH₃ decomposition catalysts.

References

(1) Mukherjee, S.; Devaguptapu, S. V.; Sviripa, A.; Lund, C. R. F.; Wu, G. Low-temperature ammonia decomposition catalysts for hydrogen generation. *Applied Catalysis B: Environmental* **2018**, *226*, 162-181. DOI: <u>https://doi.org/10.1016/j.apcatb.2017.12.039</u>.

(2) T-Raissi, A. Technoeconomic Analysis of Area II, Hydrogen Production Part II: Hydrogen From Ammonia and Ammonia-Borane Complex for Fuel Cell Applications," 2002.

(3) Lipman, T.; Shah, N. Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report. *Institute of Transportation Studies, UC Berkeley, Institute of Transportation Studies, Research Reports, Working Papers, Proceedings* **2007**.

GHENT UNIVERSITY