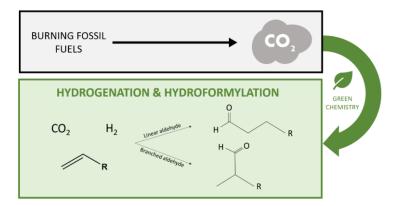
LABORATORY FOR CHEMICAL TECHNOLOGY Technologiepark 125, 9052 Gent, Belgium

Coach	Supervisor(s)	Funding
ir. Sébastien Siradze	prof. dr. ir. Joris Thybaut,	-
ir. Maria Herrero Manzano	dr. ir. Jeroen Poissonnier	


Experimental investigation of ethylene hydroformylation with CO₂ using a bifunctional gold/rhodium catalyst

Aim

Assess the viability of performing ethylene hydroformylation using CO₂ as a reactant instead of CO. A gold/rhodium-based catalyst will be synthesized which can catalyze the reverse water-gas shift of CO₂ to CO and the hydroformylation of ethylene to propanal. To investigate the reaction, experimental work will be carried out in a fixed-bed reactor with the synthesized catalyst.

Justification

Hydroformylation is performed on a large scale in industry to obtain aldehydes from alkenes. During the reaction, an aldehyde group coming from a syngas mixture (CO and H₂) is added to the double bond of the olefin producing chains which are longer by one carbon atom. As a more renewable alternative, CO_2 could be used instead of CO as a reactant. Rh catalysts are known to be active for ethylene hydroformylation to propanal at mild temperatures around 100 °C [1], but are not as active for the reverse water-gas shift of CO_2 to CO at the considered temperatures. For this reason, gold nanoparticles could be added to the catalyst to catalyze the latter reaction at similar temperatures, leading to a more sustainable hydroformylation. The goal of this thesis is to investigate the feasibility of ethylene hydroformylation with CO_2 as a reactant using a bifunctional heterogeneous catalyst.

Program

- 1. Literature survey on rhodium and gold catalysts for hydroformylation and reverse water-gas shift
- 2. Synthesis and characterization of a heterogeneous catalyst containing gold and rhodium nanoparticles
- 3. High-throughput kinetic investigation, experimental campaign of heterogeneous hydroformylation of ethylene using CO₂ and hydrogen as the gas feed mixture.
- 1. Navidi, N., G.B. Marin, and J.W. Thybaut, A Single-Event Microkinetic model for ethylene hydroformylation to propanal on Rh and Co based catalysts. Applied Catalysis A: General, 2016. **524**: p. 32-44.

