Biomass to Olefins:
Steam Cracking of Renewable Feedstocks

Steven P. Pyl

Laboratory for Chemical Technology, Ghent University
http://www.lct.UGent.be

Methusalem Advisory Board Meeting, June 19, 2012
Outline

Introduction: Green Olefins

Pilot Plant Steam Cracking of Hydrodeoxygenated Biomass
- Feedstock analyses
- Effect of feedstock on product yields
- Effect of feedstock on run-length

Reactor and Kinetic modeling
- Effect of Coil Outlet Temperature on product yields

Conclusions
Poultry Fat to Olefins

Poultry Fat & Yellow Grease → Hydro-deoxygenation → CO, CO₂, H₂O

→ HDO – FAT (C₁₄-C₂₆ n-Paraffins) → Hydrocracking + Fractionation

→ LPG (C₃-C₄) Jet Fuel (C₁₀-C₁₅) → Renewable Naphtha (C₄-C₁₀)

Steam Cracking → GREEN OLEFINS
Crude Tall Oil Refining

Pine Wood → Kraft Pulping Process → Crude Tall Oil → Fractionation

Fractionation:
- Heads
- TOFA
- DTO
- Pitch

TOFA → Hydro-deoxygenation → HDO – TOFA (C_{14}-C_{26} n-Paraffins) → Steam Cracking → GREEN OLEFINS
Outline

Introduction: Green Olefins

Pilot Plant Steam Cracking of Hydrodeoxygenated Biomass

- Feedstock analyses
- Effect of feedstock on product yields
- Effect of feedstock on run-length

Reactor and Kinetic modeling

- Effect of Coil Outlet Temperature on product yields

Conclusions
Detailed Feedstock Analyses

→ Hydrodeoxygenated Tall Oil Fatty Acids (TOFA)

→ Using comprehensive 2D gas chromatography
Fossil vs. Renewable Feedstocks

Renewable Naphtha
- n-paraffins: 33%
- naphthenes: 7%
- iso-paraffins: 60%
- aromatics: 0.8%

HDO-FAT
- n-paraffins: 96%
- naphthenes: 1%
- iso-paraffins: 3%
- aromatics: 0.8%

HDO-TOFA
- n-paraffins: 91%
- naphthenes: 6%
- iso-paraffins: 3%
- aromatics: 0.1%
- FAME: 0.2%

Naphtha
- n-paraffins: 35%
- naphthenes: 16%
- iso-paraffins: 46%
- aromatics: 3%

Gas Oil
- n-paraffins: 24%
- aromatics: 29%
- iso-paraffins: 33%
- thiophenes: 1%

Natural Gas Condensate
- n-paraffins: 18%
- naphthenes: 35%
- iso-paraffins: 32%
- aromatics: 14%
Steam Cracking Pilot Plant

High temperature sampling system

Online Analysis Section

$CH_4 \rightarrow PAHs$

Gas-Fired Furnace + Reactor

Control Room

H_2O

HC Feed
Effect of feedstock on product yields

P/E = 0.50

<table>
<thead>
<tr>
<th></th>
<th>Reference Feedstock</th>
<th>Renewable Feedstocks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full-range Naphtha</td>
<td>Renewable Naphtha</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HDO-FAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HDO-TOFA</td>
</tr>
<tr>
<td>Methane</td>
<td>16.9</td>
<td>17.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.4</td>
</tr>
<tr>
<td>CO</td>
<td>0.08</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>Ethylene</td>
<td>26.5</td>
<td>32.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35.4</td>
</tr>
<tr>
<td>Propylene</td>
<td>13.1</td>
<td>16.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18.2</td>
</tr>
<tr>
<td>1,3-butadiene</td>
<td>5.41</td>
<td>5.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.41</td>
</tr>
<tr>
<td>Benzene</td>
<td>9.74</td>
<td>6.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.35</td>
</tr>
<tr>
<td>Toluene</td>
<td>4.59</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.42</td>
</tr>
<tr>
<td>Xylenes</td>
<td>1.35</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.26</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td>1.54</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.57</td>
</tr>
<tr>
<td>COT</td>
<td>870°C</td>
<td>865°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>835°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>820°C</td>
</tr>
</tbody>
</table>

Yields [wt%]

\[\delta = 0.45\text{kg/kg} \]

COT

- Methusalem Advisory Board Meeting, June 19, 2012
COT = 850°C

Effect of feedstock on run-length

Pilot plant cokes test → Cokes formation during 6-h steady state operation

Renewable Naphtha: 3.5 g cokes / 6 h
HDO-FAT: 5.55 g cokes / 6 h
HDO-TOFA: 5.8 g cokes / 6 h
Ethane: 2.5 g cokes / 6 h
Petroleum Naphtha: 4.4 g cokes / 6 h
Natural Gas Condensate: 5.8 g cokes / 6 h

Renewable Feedstocks
Reference Feedstocks

To do …
<table>
<thead>
<tr>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction: Green Olefins</td>
</tr>
<tr>
<td>Pilot Plant Steam Cracking of Hydrodeoxyxygenated Biomass</td>
</tr>
<tr>
<td>- Feedstock analyses</td>
</tr>
<tr>
<td>- Effect of feedstock on product yields</td>
</tr>
<tr>
<td>- Effect of feedstock on run-length</td>
</tr>
<tr>
<td>Reactor and Kinetic modeling</td>
</tr>
<tr>
<td>- Effect of Coil Outlet Temperature on product yields</td>
</tr>
<tr>
<td>Conclusions</td>
</tr>
</tbody>
</table>
Reactor and Kinetic Modeling

Microkinetic Model

- $R_1 - R_2 \leftrightarrow R_1^* + R_2^*$
- $R_1 - H + R_2^* \leftrightarrow R_1^* + R_2 - H$
- $R_1 = R_2 + R_3^* \leftrightarrow R_1^* - R_2 - R_3$

Free Radical Mechanism

System of Differential Equations

- $\frac{dF}{dz} = \left(\sum_{k=1}^{n} \nu_k r_k \right) \Omega$
- $\sum_j F_j c_{pj} \frac{dT}{dz} = \omega q + \Omega \sum_k r_{v,k} (-\Delta H_k)$
- $-\frac{dp_i}{dz} = \alpha \left(\frac{2f}{d_i} + \frac{\zeta}{\pi r_b} \right) \rho_g u^2 + \alpha \rho_g u \frac{\partial u}{\partial z}$

numerical integration

Plug flow

Reactor Model

Concentration Profiles & Product Yields
Temperature and Pressure Profile
Single-event Microkinetic Model

1. Automatic reaction network generation
2. Group-additive calculation of rate coefficients
3. Quasi steady state approximation for μ radicals
4. In situ lumping of primary products
5. A posteriori lumping of feed molecules

Microkinetic Model

- 51 paraffins: $C_0 - C_{26}$
- 168 olefins: $C_2 - C_{26}$
- 14 aromatics: $C_6 - C_{14}$
- 43 radicals: $C_0 - C_7$

276 species: $C_0 - C_{26}$
HDO-FAT Steam Cracking

simulated yields (lines) vs. pilot plant yields (symbols)

\[\delta = 0.45 \text{ kg/kg} \]

Coil Outlet Temperature (COT)
755°C → 865°C
Renewable Naphtha Steam Cracking

Simulated yields (lines) vs. pilot plant yields (symbols)

\[\delta = 0.45 \text{ kg/kg} \]

Coil Outlet Temperature (COT)

820°C → 860°C
Outline

Introduction: Green Olefins

Pilot Plant Steam Cracking of Hydrodeoxygenated Biomass
- Feedstock analyses
- Effect of feedstock on product yields
- Effect of feedstock on run-length

Reactor and Kinetic modeling
- Effect of Coil Outlet Temperature on product yields

Conclusions
Conclusions

• Biowaste is a promising starting material for the production of *green olefins*

• Hydrodeoxygenation of waste fats as well as tall oils produces highly paraffinic liquids

• Steam cracking of these liquids results in high light olefin yields

• Microkinetic modeling provides a rigorous fundamental basis for industrial reactor models
Thank you for your attention!
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biowaste</td>
<td>A variety of renewable animal and vegetal waste streams arising from households, commerce and the food manufacturing industry.</td>
</tr>
<tr>
<td>Comprehensive two-dimensional gas chromatography</td>
<td>Advanced analytical technique that provides two-dimensional separation by combining two different analytical columns connected with an interface, called the modulator, that ensures that the entire sample is comprehensively subjected to both separations.</td>
</tr>
<tr>
<td>Group additive framework</td>
<td>Framework that enables automated calculation of thermodynamic or kinetic data from the structure of the molecule or transition state respectively by summation of group-additive values.</td>
</tr>
<tr>
<td>Hydrodeoxygenation</td>
<td>A catalytic process which, in the presence of hydrogen, removes oxygen from organic components in the form of water. Common side-reactions are decarboxylation and decarbonylation producing carbon dioxide and carbon monoxide respectively.</td>
</tr>
<tr>
<td>Tall oil</td>
<td>A viscous yellow-black odorous liquid obtained as a by-product of the Kraft process of wood pulp manufacture when pulping mainly coniferous trees. The name originated as an Anglicization of the Swedish "tallolja" ("pine oil"). Crude tall oil can be fractionated into several fractions, including so-called tall oil fatty acids (TOFA) and distilled tall oil (DTO).</td>
</tr>
</tbody>
</table>