UGent Francqui Chair 2013 / 6-7th Lectures

Response and dynamics of chemical reactors and instrumentation

Nikos Papayannakos, Professor
National Technical University of Athens
School of Chemical Engineering
Unit of Hydrocarbons and Biofuels Processing

Basics on Dynamics

First Order Systems

Thermocouple
Mixer
CSTReactor
Non-linear systems
Responses to standard stimuli

Second Order Systems

Non-interacting 1st-Order systems
Interacting 1st-Order systems
Generalized response of 2nd-Order systems
Response of Plug Flow Rectors
Time delay / $\mathrm{C}_{\text {in }}$ Changes -Q changes
T_{R} / P_{R} changes
Operation of combined CSTR - PFR networks
Conclusions

Dynamics is related to changes with time

Dynamic equations describe the evolution of systems with time

Although the fashion in the field of dynamics is the study of complicated systems, the study of simple systems, which in many cases compose the bigger systems, provides useful knowledge to the chemical engineers' background

The basis for building the dynamic equations in Chemical Engineering systems Is the Mass and Energy balances

> The dynamic equations and their solutions must be well understood "physical meaning"
> Not be considered simply as a way to 'produce' numbers describing the evolution of the system

First Order Dynamic systems

$$
\tau \frac{d y}{d t}+y=f(t) \text { or } A, \quad \text { Initial Conditions }
$$

First order ordinary differential equations are often exactly solvable by separation of variables

$$
\begin{aligned}
& \text { For I. C. : } t=0, y=y_{0} \\
& y(t)-A=\left(y_{0}-A\right)_{x}\left(e^{-t / \tau}\right) \\
& y(t)-y_{0}=\left(A-y_{0}\right) \times\left(1-e^{-t / \tau}\right) \\
& y(t)=A+\left(y_{0}-A\right)_{x}\left(1-e^{-t / \tau}\right)
\end{aligned}
$$

Thermocouple

Small and easy to use device for temperature measurements in process equipments

Principle of Operation

Contemporary techniques
Transducer

- Electronic compensation for the Joints Cold Point T_{c}
- Fast signal transmission from measuring junction to display

Simulation of the Dynamic operation of a Thermocouple

- Isothermal thermocouple bulb (Conduction>> Convection)

Energy balance
Heat flow into bulb $=$ Accumulation
$A_{\text {sph }} \times h_{f} \times\left(T_{B}-T\right) \times d t=m_{t h} \times C_{p t h} \times d T$
Final Equation

Typical Response

Step Stimulus
$\mathrm{t}<0, \mathrm{~T}=\mathrm{T}_{\mathrm{B} 1}=60^{\circ} \mathrm{C}$ $\mathrm{t} \geq 0, \mathrm{~T}_{\mathrm{B} 2}=80^{\circ} \mathrm{C}$

$$
\begin{gathered}
y(\mathrm{t})=80-20^{*}\left(1-\mathrm{e}^{-\mathrm{t} / 4}\right) \\
\mathrm{y}(\mathrm{t}): \mathrm{T},{ }^{\circ} \mathrm{C} \\
\mathrm{t}: \sec
\end{gathered}
$$

Continuous Stirred Mixer

> Mass Balance
> Mass In-flow - Mass Out-flow $=$ Accumulation
> ${\mathrm{Q} \times \mathrm{C}_{\mathrm{A} 0}-\mathrm{Q} \times \mathrm{C}_{\mathrm{A}}}=\mathrm{V}_{\mathrm{R}} \frac{\mathrm{dC}_{A}}{d t}$

Final Form $\begin{aligned} & : \frac{V_{R}}{Q} \frac{d C_{A}}{d t}+C_{A}=C_{A O} \\ & \tau=\text { time constant }=\text { space time }=\tau^{*}\end{aligned}$

For a Step Stimulus from $\mathrm{C}_{\mathrm{A} 01}(\mathrm{t}<0)$ to $\mathrm{C}_{\mathrm{A} 02}(\mathrm{t} \geq 0)$ the analytical solution :

$$
C_{A}=C_{A 02}+\left(C_{A 01}-C_{A 02}\right)\left(e^{-t / \tau}\right)
$$

CSTReactor

Mass Balance
Mass In-flow - Mass Out-flow - Mass Reacting = Accumulation

$$
Q \times C_{A 0}-Q_{\times} C_{A}-(-r) \times V_{R}=V_{R} \frac{d C_{A}}{d t}
$$

What is the reason of existence of Transition Period in Perfect Mixing?

The different Residence Times
Cumulative Distribution Function $\mathrm{F}(\mathrm{t})$

Non-linear Systems

Pressure vessel with relief valve

Mass Balance
Mass In-flow - Mass Out-flow = Accumulation

$$
\left.\mathrm{K}_{1} \times \mathrm{P}_{\mathrm{F}}-\mathrm{P}\right)^{1 / 2}-\mathrm{K}_{2} \times\left(\mathrm{P}-\mathrm{P}_{\mathrm{OUT}}\right)^{1 / 2}=\frac{\mathrm{dm}_{\text {Gas }}}{\mathrm{dt}}=\frac{\mathrm{V}_{\mathrm{X}} \times \mathrm{MW}_{\text {Gas }}}{\mathrm{RT}} \frac{\mathrm{dP}}{\mathrm{dt}}
$$

Non-linear Terms

$$
\text { At Steady State: } k_{1}\left(p_{F 0}-p_{0}\right)^{1 / 2}-k_{2}\left(p_{0}-1\right)^{1 / 2}=0
$$

Taylor Series approximation

$$
\begin{aligned}
& k_{1}\left(p_{F}-p\right)^{1 / 2}=k_{1}\left(p_{F 0}-p_{0}\right)^{1 / 2}+\frac{\partial}{\partial p_{F}}\left[k_{1}\left(p_{F}-p\right)^{1 / 2}\right]_{0}\left(p_{F}-p_{F 0}\right)+\frac{\partial}{\partial p}\left[k_{1}\left(p_{F}-p\right)^{1 / 2}\right]_{0}\left(p-p_{0}\right) \\
& =k_{1}\left(p_{F 0}-p_{0}\right)^{1 / 2}+\frac{k_{1}}{2}\left(p_{F 0}-p_{0}\right)^{-1 / 2}\left(p_{F}-p_{F 0}\right)-\frac{k_{1}}{2}\left(p_{F 0}-p_{0}\right)^{-1 / 2}\left(p-p_{0}\right)
\end{aligned}
$$

$$
\begin{gathered}
k_{2}(p-1)^{1 / 2}=k_{2}\left(p_{0}-1\right)^{1 / 2}+\frac{\partial}{\partial p}\left[k_{2}(p-1)^{1 / 2}\right]_{0}\left(p-p_{0}\right) \\
=k_{2}\left(p_{0}-1\right)^{1 / 2}+\frac{k_{2}}{2}\left(p_{0}-1\right)^{-1 / 2}\left(p-p_{0}\right)
\end{gathered}
$$

Final Form : $\frac{C}{\alpha+\beta} \frac{d P}{d t}+P=\frac{\alpha}{\alpha+\beta}\left(P_{F}-P_{F O}\right)+P_{0}$

$$
a=\frac{k_{1}}{2}\left(p_{F 0}-p_{0}\right)^{-1 / 2}, \quad \beta=\frac{k_{2}}{2}\left(p_{0}-1\right)^{-1 / 2}
$$

Responses to Standard Stimuli

1. Step Input - Stimulus

Dynamic Equation

$$
\begin{aligned}
& \tau \frac{d y}{d t}+y=A \\
& \text { I. } C .: t=0, y=0
\end{aligned}
$$

Solution of the Equation

$$
y=y_{s}+y_{t}
$$

$\mathrm{y}_{\mathrm{S}}=$ Steady State or Particular Solution
$y_{t}=$ Transient or Complimentary Solution

$$
\begin{aligned}
& \tau \frac{d\left(y_{s}+y_{t}\right)}{d t}+y_{s}+y_{t}=A \longrightarrow \longrightarrow \tau \frac{d y_{t}}{d t}+y_{t}=0 \longrightarrow y_{t}=B e^{s t} \\
& y_{s}=A
\end{aligned}
$$

$y=A\left(1-e^{-t / \tau}\right) \quad$ or $\quad \frac{y-y_{0}}{y_{1}-y_{0}}=1-e^{-t / \tau}$

- The system has no memory
- For any time period of $\tau, 63 \%$ of the remaining distance to the new steady state is covered
- After $t=3 \mathrm{t}, 95 \%$ of the distance to new steady state (A) is covered

2. Ramp/liner forcing

Dynamic Equation

I. $C .: t=0, y=y_{0}=r_{0}$

Solution :

$$
\tau \frac{d\left(y_{S}+y_{t}\right)}{d t}+y_{S}+y_{t}=K t+r_{1} \longrightarrow \begin{aligned}
& \tau \frac{d y_{t}}{d t}+y_{t}=0 \quad y_{t}=B e^{s t} \\
& y_{S}=\alpha t+\beta
\end{aligned}
$$

$$
y=\left(K t+r_{1}-K \tau\right)+\left[\left(r_{0}-r_{1}\right)+K \tau\right] e^{-t / \tau}
$$

General Response to a Ramp/liner forcing

- Dynamic Error Velocity Error at Steady State : K
- The Time lag at Steady State : $\boldsymbol{\tau}$

3. Impulse Forcing and Response

Response for $\mathrm{t}>\Delta \mathrm{t}$

$$
\frac{y-y_{A}}{y_{0}-y_{A}}=1-e^{-t / \tau}
$$

$$
y=y_{0}+\left(y_{1}-y_{0}\right)(\Delta t / \tau) e^{-t / \tau}=y_{0}+\frac{I}{\tau} e^{-t / \tau}
$$

Response for $0 \leq t \leq \Delta t$

$$
\begin{aligned}
& \frac{y-y_{0}}{y_{1}-y_{0}}=1-e^{-t / \tau} \\
& \quad \text { or } \\
& y_{A}-y_{0}=\left(y_{1}-y_{0}\right)\left(1-e^{-\Delta t / \tau}\right)
\end{aligned}
$$

$$
\left(1-e^{-\Delta t / \tau}\right)_{\Delta t->0}=\Delta t / \tau
$$

$$
\mathrm{y}_{\mathrm{A}}=\mathrm{y}_{0}+\left(\mathrm{y}_{1}-\mathrm{y}_{0}\right) \Delta \mathrm{t} / \tau
$$

Where $\mathrm{I}=\left(\mathrm{y}_{1}-\mathrm{y}_{0}\right) \Delta \mathrm{t}$

- The response depends on the 'total' Input and not on the real form of the Impulse

4. Sine Input

One of the most important stimuli that represents all the periodic Inputs and its study gives useful deductions for system behavior

$$
\begin{gathered}
y=y_{S}+y_{t} \\
y_{S}=C \sin (\omega t+\Psi) \\
y_{t}=B e^{-t / \tau}
\end{gathered}
$$

$$
\begin{aligned}
& C \omega \tau \cos (\omega t+\Psi)+C \sin (\omega t+\Psi)=A \sin (\omega t) \\
& \Psi=\arctan (-\omega \tau)<0: \text { Phase delay } \\
& C=\frac{A}{\sqrt{1+\omega^{2} \tau^{2}}} \quad B=C \sin (\arctan (\omega \tau))
\end{aligned}
$$

$$
y=\frac{A}{\sqrt{1+\omega^{2} \tau^{2}}}\left(\sin (\arctan (\omega \tau)) \mathrm{e}^{-\mathrm{t} / \tau}+\sin (\omega t+\arctan (-\omega \tau))\right.
$$

- The higher the stimulus frequency and

The higher the System's inertia
The smaller the response amplitude

Application of Stimulus/Response techniques to study Ideal - Non-Ideal flow

CSTR

- Assumption : Total mixing
- Step Tracer Input $0 \rightarrow \mathrm{C}_{\mathrm{iF}}$

Mass balance :

$$
\mathrm{QC}_{\mathrm{iF}}-\mathrm{QC}_{\mathrm{iE}}=\mathrm{V}_{\mathrm{R}} \frac{\mathrm{dC}_{\mathrm{iE}}}{\mathrm{dt}}
$$

I. C. : $\mathrm{t}=0, \mathrm{C}_{\mathrm{iE}}=0$

From solution :

$$
\frac{C_{i E}}{C_{i F}}=1-e^{-t / \tau}=F(t)
$$

Cumulative residence time distribution $=$ \% flow with Residence Time < t

Dynamics of non-homogenuous CSTReactors

Berty Stationary Basket Catalyst Reactor
Carberry Spinning Basket Catalyst Reactor
Free flowing Catalyst Reactor

$$
\frac{\mathrm{V}_{\mathrm{R}}}{\mathrm{Q}+\mathrm{k}^{*} \mathrm{~V}_{\mathrm{Cat}}} \longleftarrow \begin{gathered}
\tau: \text { time constant } \\
\text { Measure of System's Inertia }
\end{gathered} \longrightarrow \frac{\mathrm{V}_{\mathrm{R}}}{\mathrm{Q}+\mathrm{k}^{* *} \mathrm{~V}_{\text {Solid }}}
$$

$K^{*}=$ first or linearized-first order
$K^{* *}=$ first or linearized-first order catalytic reaction rate constant decomposition rate constant

Second Order Dynamic systems

System with two non-interacting $1^{\text {st }}$ Order stages in series

$$
\begin{equation*}
\text { (A) } \quad \tau_{1} \tag{B}
\end{equation*}
$$

Laplace Transform $:(A) \rightarrow \quad \frac{L y_{2}}{L y_{1}}=\frac{K_{2}}{1+\tau_{2} S}$
(B) $\rightarrow \frac{L y_{1}}{L y_{0}}=\frac{K_{1}}{1+\tau_{1} s}$

$$
\frac{L y_{2}}{L y_{0}}=\frac{K_{1}}{1+\tau_{1} s} \frac{K_{2}}{1+\tau_{2} s}
$$

System with two interacting $1^{\text {st }}$ Order stages in series

Assumptions :

1. Negligible heat loss through cables and sheath top
2. Isothermal sheath walls
3. Isothermal bulb of the measuring junction

Resistances to Heat Flow:

1. From the fluid to the thermowell

$$
\stackrel{\circ}{\mathrm{q}}_{\mathrm{L}}=\mathrm{h}_{\mathrm{L}}\left(\mathrm{~T}_{\mathrm{L}}-\mathrm{T}_{\mathrm{S}}\right)
$$

2. From the sheath to the thermometer junction

$$
\stackrel{\circ}{q}_{V}=h_{V}\left(T_{S}-T_{T}\right)
$$

Thermal Accumulations :

1. In the sheath

$$
\stackrel{\circ}{\mathrm{q}}_{\mathrm{s}}=\mathrm{m}_{\mathrm{s}} \mathrm{c}_{\mathrm{s}} \frac{\mathrm{dT}_{\mathrm{S}}}{\mathrm{dt}}
$$

2. In the thermometer head

$$
\stackrel{\circ}{\mathrm{q}}_{\mathrm{T}}=\mathrm{m}_{\mathrm{T}} \mathrm{c}_{\mathrm{T}} \frac{\mathrm{~d} \mathrm{~T}_{\mathrm{T}}}{\mathrm{dt}}
$$

Energy Balances:

1. Sheath: $\stackrel{\circ}{q}_{L}=\stackrel{\circ}{q}_{S}+\stackrel{\circ}{q}_{v}$
2. Thermometer Bulb : $\stackrel{\circ}{\mathrm{q}}_{\mathrm{V}}=\stackrel{\circ}{\mathrm{q}}_{\mathrm{T}}$

Final Equation :

$$
\begin{aligned}
& \tau_{\mathrm{S}} \tau_{\mathrm{T}} \frac{d^{2} T_{T}}{d t^{2}}+\left(\tau_{S}+\tau_{\mathrm{T}}+\tau_{\mathrm{ST}}\right) \frac{d T_{T}}{d t}+T T=T L \\
& \tau_{\mathrm{S}}=\frac{\mathrm{m}_{\mathrm{S}} \mathrm{c}_{\mathrm{S}}}{\mathrm{~h}_{\mathrm{L}}} \quad \tau_{\mathrm{T}}=\frac{\mathrm{m}_{\mathrm{T}} \mathrm{c}_{\mathrm{T}}}{\mathrm{~h}_{\mathrm{V}}} \quad \tau_{\mathrm{ST}}=\frac{\mathrm{m}_{\mathrm{T}} \mathrm{c}_{\mathrm{T}}}{\mathrm{~h}_{\mathrm{L}}}
\end{aligned}
$$

With Initial Conditions: at $\mathrm{t}=0: \mathrm{T}_{\mathrm{T}}=0, \frac{d T_{T}}{d t}=0$ and Laplace transform

$$
\mathrm{G}(\mathrm{~s})=\frac{L T_{T}}{L T_{L}}=\frac{1}{1+\left(\tau_{\mathrm{S}}+\tau_{T}+\tau_{\mathrm{ST}}\right) \mathrm{s}+\tau_{\mathrm{S}} \tau_{\mathrm{T}} \mathrm{~s}^{2}}
$$

$$
\frac{L T_{T}}{L T_{L}}=\frac{1}{\left(1+\tau_{1} s\right)\left(1+\tau_{2} s\right)}
$$

Where:
$\tau_{1} \tau_{2}=\tau_{S} \tau_{T}$
$\tau_{1}+\tau_{2}=\tau_{S}+\tau_{T}+\tau_{S T}$
τ_{1} and τ_{2} are the 'apparent' time constants of the system

- Both systems composed of two first order systems in series
either interacting or non-interacting are described by the same Laplace equation
- For the non-interacting system the two time constants are those corresponding to each first order system
- For the interacting system the time constants are combinations of the characteristic parameters of the system

Response of systems represented by two $1^{\text {st }}$ Order systems is series

$$
\frac{L y}{L y_{0}}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\left(1+\tau_{1} s\right)\left(1+\tau_{2} s\right)}
$$

$$
\mathrm{Ly}=\mathrm{MK}_{1} \mathrm{~K}_{2} \frac{1 / \tau_{1}}{\left(\mathrm{~s}+1 / \tau_{1}\right)} \frac{1 / \tau_{2}}{\left(\mathrm{~s}+1 / \tau_{2}\right)} \frac{1}{\mathrm{~s}}
$$

$1^{\text {st }}$ Case

$$
\tau_{1} \neq \tau_{2}
$$

$$
L y=M K_{1} K_{2}\left[\frac{A}{\left(s+1 / \tau_{1}\right)}+\frac{B}{\left(s+1 / \tau_{2}\right)}+\frac{C}{s}\right]
$$

$$
y=H\left[1+\frac{\tau_{1}}{\tau_{2}-\tau_{1}} e^{-t / \tau 1}-\frac{\tau_{2}}{\tau_{2}-\tau_{1}} e^{-t / \tau 2}\right]
$$

$$
\mathrm{H}=\mathrm{MK}_{1} \mathrm{~K}_{2}
$$

Properties of a $2^{\text {nd }}$ Order response curve

$$
\begin{aligned}
& \mathbf{t}_{\mathrm{x}}=\frac{\tau_{1} \tau_{2} \ln \left(\tau_{1} / \tau_{2}\right)}{\tau_{2}-\tau_{1}} \\
& \boldsymbol{\Psi}_{\mathrm{x}}=1+\left.\left(\tau_{1}+\tau_{2}\right) \frac{\mathbf{d} \boldsymbol{\Psi}}{\mathbf{d t}}\right|_{\mathbf{t}_{\mathrm{x}}}
\end{aligned}
$$

Calculate $\boldsymbol{\tau}_{1}, \tau_{2}$

$$
2^{\text {nd }} \text { Case } \quad \tau_{1}=\tau_{2}=\tau
$$

$$
\mathrm{Ly}=\mathrm{MK}_{1} \mathrm{~K}_{2} \frac{1 / \tau}{(\mathrm{s}+1 / \tau)} \frac{1 / \tau}{(s+1 / \tau)} \frac{1}{s}
$$

$$
y=H\left(1-(1+t / \tau) e^{-t / \tau}\right)
$$

$$
\begin{aligned}
\boldsymbol{\Psi}_{\mathrm{x}} & =0.265 \\
\mathbf{t}_{\mathrm{x}} & =\tau
\end{aligned}
$$

General Second Order Dynamic System

The General Form of $2^{\text {nd }}$ Order Systems is :

$$
\mathrm{A} \frac{d^{2} y}{d t^{2}}+B \frac{d y}{d t}+y=\mathrm{f}(\mathrm{t})
$$

And for a step stimulus it can be transformed to :

$$
\frac{1}{c^{2}} \frac{d^{2} y}{d t^{2}}+2 z n c \frac{d y}{d t}+c^{2} y=c^{2} H \quad \mathrm{c}=\frac{1}{\sqrt{A}} \quad \mathrm{z}_{\mathrm{n}}=\frac{B}{2 \sqrt{A}}
$$

With Laplace transform :

$$
L y=\frac{H c^{2}}{s\left(s^{2}+2 z_{n} c s+c^{2}\right)}
$$

With roots: $\mathrm{s}_{1,2}=-\mathrm{z}_{\mathrm{n}} \mathrm{c} \pm \mathrm{c} \sqrt{z_{n}^{2}-1}$

1. $\mathrm{z}_{\mathrm{n}}>1: \mathrm{s}_{1,2}$ real numbers corresponding to two $1^{\text {st }}$ order systems in series
2. $z_{n}=1$: Two equal roots. As previously described
3. $z_{n}<1$: In this case the response to a step stimulus will be

$$
\begin{gathered}
\mathrm{y}=\mathrm{H}\left[1+\frac{1}{\sqrt{1-z n^{2}}} e^{-z n c t} \sin \left(c t \sqrt{1-z n^{2}}-\phi\right)\right] \\
\phi=\sin ^{-1} \sqrt{1-z n^{2}}
\end{gathered}
$$

3.1 Special case : $\mathrm{z}_{\mathrm{n}}=0$

$$
y=H\left(1-\cos \left(z_{n} t\right)\right)
$$

$z_{n}>1$ Over-damped behavior
$z_{n}=1$ Critically damped behavior
$0<z_{n}<1$ Under-damped behavior
$z_{n}=0$ Undamped behavior Sustained Oscilation

Transfer Delay in Plug Flow Reactors

By definition of the ideal situation of Plug Flow all the molecules/masses will have the same Residence Time inside the reactor

The elementary masses entering the reactor can be considered as batch reactors operating for a time period equal to Residence Time.

$$
\begin{aligned}
& \text { Residence Time Empty Tubes - Homogeneous reactions } \overline{\mathrm{t}}=\tau=\frac{V_{R}}{Q} \\
& \text { Tubes filed with solids (catalyst - inerts) } \\
& \text { One fluid phase } \\
& \text { Two fluid phases } \\
& \overline{\mathrm{t}}=\tau=\frac{\varepsilon V_{R}}{Q} \\
& \overline{\mathrm{t}}=\tau=\frac{h(\varepsilon) V_{B}}{Q}
\end{aligned}
$$

Possible changes during Operation: $\mathrm{C}_{\mathrm{in},}, \mathrm{Q}, \mathrm{T} / \mathrm{P}$
$\underline{C}_{\text {IN }}$ Change
Response at the exit delays for $t=\tau$

$$
C_{\text {out }}(t)=K C_{\text {in }}(t-\tau)
$$

K: Attenuation/Amplification Constant For $1^{\text {st }}$ Order Reaction: K $=1-\exp \left(-k_{1} \tau\right)$

Q Change
Residence time will vary according to the Q change
Response at the exit has no-delay
$f(t)$ is a function of reaction kinetics and residence time change

T/P Change

Residence time is constant
Response at the exit has no-delay
$f(t)$ is a function of reaction kinetics and residence time change

For a step change of T / P
During the transition period ($0<\mathrm{t}<\tau$) the exit concentration will be a combination of the initial period before the stimulus and the second period after the stimulus.

Systems with CSTR and PFR

CONCLUSIONS

First Order Systems

1. The way of imposing an Impulse Stimulus does not affect the Response
2. A continuously Changing stimulus results in response Delay and Offset
3. For a Periodic Stimulus an Attenuation of the amplitude is observed with input frequency. The response frequency is the same as the stimulus frequency

Second Order Systems
4. For Non-Interacting two first order systems in series the system's time constants are those of the two $1^{\text {st }}$ Order systems
5. A sigmoid response curve can be simulated by a second order system with time constants calculated from the time and the response of the inflection point

Plug flow reactors
6. The response of a plug flow reactor depends on the Stimulus.

Changes in input concentration result in response delays equal to R.T. (τ) Changes in feed flow rate or operating conditions result in response without delay

