UGent Francqui Chair 2013 / 2nd Lecture

Studies on esterification of Free Fatty Acids in biodiesel production

Nikos Papayannakos, Professor

National Technical University of Athens School of Chemical Engineering Unit of Hydrocarbons and Biofuels Processing

Contents

- Introduction Link with 1st Lecture
- Effect of FFAs in Vegetable Oils and Fats
- Homogeneous processes for high FFA feeds
- Heterogeneous catalysis for FFA conversion
- Esterification in a Batch reactor
- Esterification in a fixed catalytic bed
- Kinetic models for FFA esterification
- Conclusions

1st Lecture

- Production of Biodiesel through <u>Transesterification of Triglycerides</u> in Vegetable Oils and Fats
 - Homogeneous Thermal (No catalyst Use)
 - Homogeneous Catalytic (Acid catalyst Base catalyst)
 - Heterogeneous Catalytic (Solid catalyst/carriers Active Phase)
- Catalytic effect of Free Fatty Acids (FFAs) present in Vegetable Oils and Fats on <u>Transesterification reactions</u>
- Raw Materials : Refined Vegetable Oils and Fats At Least De-gummed and Neutralized

Sources: http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/ http://www.indexmundi.com/commodities/?commodity=crude-oil

- ✓ Acidic Vegetable Oils / Fats and Cooking Oils are considered as very attractive alternative
 Raw materials and the Biodiesel from them may not need subsidizing to be used as (Bio)Fuel
- Convert Waste to Fuels
 (High acidity Oils and Fats)

Cost Breakdown for Biodiesel

http://www.epa.gov/region9/waste/biodiesel/questions.html

Alternative Raw Materials for Biodiesel Production Acidic Vegetable Oils (*FFAs* > 1 wt %) Animal Fats (*FFAs* > 5 wt %) Cooking Oils (*FFAs* > 2.5 wt %)

Fatty Acid	Beef Tallow	Pork Lard	Chicken Fat
Myristic 14:0 Palmitic 16:0 Palmitoleic 16:1 Stearic 18:0 Oleic 18:1 Limoleic 18:2 Typical Saturation*	1.4 - 6.3 $20 - 37$ $0.7 - 8.8$ $6 - 40$ $26 - 50$ $0.5 - 5$ 40 Solid	$\begin{array}{c} 0.5 - 2.5 \\ 20 - 32 \\ 1.7 - 5 \\ 5 - 24 \\ 35 - 62 \\ 3 - 16 \\ 40 \\ Solid \end{array}$	1 25 8 6 41 18 30 – 33 Thick liquid/Solid
Sulphur, ppm	Up to 100	Up to 100	Up to 100

* Compare with 15 % in Soya bean Oil and 10% in Rape seed oil

http://www.extension.org/pages/30256/animal-fats-for-biodiesel-production Archivum Combustionis Vol. 30 (2010) no. 4 UGent/FCh13/2L

High Soap content

- Reduces the amount of Catalyst for transesterification
- Causes problems in Downstream/Cleaning Processing

The presence of Free fatty Acids is The CONTROLLING Parameter Of the Method (Process) used for Biodiesel production

BIODIESEL Production

For higher FFA content (> 1.5 wt%) alternative strategies must be applied in Biodiesel production Process

<u>1st alternative</sub>: Remove the FFAs from the OIL</u>

 In the Pretreatment step before transesterification, FFAs are converted into soaps and removed from the Oil (triglycerides)

<u>2nd alternative :</u> Transform FFAs and Triglycerides to Methylesters

• Application of the Acid Catalysis Method to transesterify the triglycerides and Esterify the FFAs in parallel in the same reactor

must be removed and follow the post treatment route

Esterification – Hydrolysis Reaction

Mechanism of Esterification Reaction

For Oils with high FFA content a two step esterification may be needed

• Catalyst

- Commercial super acid resin : Purolite CT-275

: 145

- Acidity (eqH^+kg^{-1}) : 5.20
- $S_{g} (m^{2}kg^{-1})$: $31x10^{-3}$
- T_{max} (°C)

Reaction Systems

- Batch reactor
- Tubular reactor

• Conditions

- Temperature range : 70 120 °C
- Operation pressure : 3 12 bara

• Feedstocks

- Free fatty acids oil refinery by-product (Palm Oil): 38.1 wt.%, 58 wt.% and 100 wt.% acidity
- Crude sunflower seed oil: 2.93 wt. % acidity
- Acid cottonseed oil: 3.03 wt. % acidity
- Analytical grade (99.9 %) Methanol

Effect of molar ratio & External mass transfer phenomena

- The maximum dissolved methanol in the system was 6.6 / 1 molmol⁻¹
- Minimal external transport phenomena in the system
- From experiment with crushed catalyst concluded that there are no internal transport phenomena

• Batch reactor

- Homogeneous mixture with constant density (d mixture = constant)
- Isothermal single phase mixture, apparent constant rates

• Single reaction first order with respect to each reacting component

Total Esterification Rate :
$$\frac{dN_{FFA}}{dt} = -(-r_{FFA})_{th} \times M_{mix} - (-r_{FFA})_{cat.} \times m_{cat}$$
$$(-r_{FFA})_{th} = -(k_{FFA,th}C_{FFA}C_{MeoH} - k_{-FFA,th}C_{ME}C_{H_2O}) \times C_{FFA}$$
$$(-r_{FFA})_{cat.} = -(k_{FFA,cat}C_{FFAS}C_{MeOH} - k_{-FFA,cat}C_{MES}C_{H_2O})$$

• Equilibrium

$$K_{eq} = \frac{k_{FFAs}}{k_{-FFAs}} = \frac{C_{MEs(eq)} \times C_{H_2O(eq)}}{C_{FFAs(eq)} \times C_{MeOH(eq)}}$$

90

38.1

7.44

0.5269

0,00

80

100

T(°C)

140

120

- Significant catalytic effect of free fatty acids
- Very good mathematical model fitting with the use of reverse reactions

MeOH/FFAs : 6.60:1 mol⁻¹

MeOH/FFAs : 2.89:1 mol⁻mol⁻¹

All Methanol to Free Fatty Acids molar ratios

Critical point for the study of the system is the dissolved methanol

- The lower the concentrations of Fatty Acids, the higher the catalytic rates as compared with the thermal ones
- The higher the temperature, the higher the catalytic rates as compared with the thermal ones

- Verification of the model in the case of vegetable oils with very high FFA content
- Two equilibrium experiments were conducted with different feedstocks and methanol-to-oil molar ratios.
- After the 1st equilibrium step the methanol and the produced water were stripped off the mixture. Then, a measured quantity of methanol was added to the mixture (FFAs, MEs and TGs) and esterification proceeded to the 2nd equilibrium step

		Experi	mental	Model	Prediction
edstock I	K _e =1.1994	Acidity (wt. %)		cidity (wt. %)	Esters (wt. %)
wt.% Acidity	Initial	58	.00	58.00	0.00
120 °C	1º Equilibrium stage	6.	13	7.62	51.40
molar ratio	2º Equilibrium stage	2.	23	2.13	57.00
	Final product	1.	02	0.80	58.36
				_	
	Experimental	Model Pr	ediction		Foodstock II
K _e =1.1994	Acidity (wt. %)	Acidity (wt. %)	Esters (wt. %)		100 wt.% Acidity
Initial	100.00	100.00	0.00	_ >	T = 120 °C
1º Equilibrium stage	20.94	22.32	77.68		3/1 molar ratio
Final product	4.00	1 60			

UGent/FCh13/2L

acid sunflower oil FFAs = **3.00 wt. %**

Moral Ratio : MeOH / FFAs = 10:1 molmol⁻¹

- Satisfactory catalytic resin activity
- Free Fatty Acids conversion from 15% to 80%

- Model using **ONLY** the reversible Esterification reaction
 - Reactor flow model : Plug flow
 - Free Parameter for fitting : the Esterification Reaction rate Constant, k_{ffas}
 - Significant variation of the Reaction Rate Constant with flow rate

No	Flow	Initial Acidity	Final acidity	$F_{\rm MEs} \times F_{\rm H_2O} / F_{\rm FFAs} \times F_{\rm MeOH}$
	g/h	(%)	(%)	K _{eq} =0,8638
6	120.0	2.912	1,34	0,09999
7	60.0	2.912	0,96	0,20377
8	60.0	2.912	1,01	0,19046
9	20.0	2.912	0,69	0,35779
10	120.0	2.912	1,36	0,09633
11	180.0	2.912	1,66	0,05478

Check for equilibrium

	This Study	LIT 1*	LIT 2*
Reactor Code	TR0	TR1	TR2
Catalyst	Purolite CT-275	Relite CFS	Relite CFS
Total acid capacity	5,2 meq H+ / g	3,6 meq H+ / g	3,6 meq H+ / g
Mean particles diameter	0,77 mm	0,7 mm	0,7 mm
Bed length - L	19,4 cm	18,0 cm	70,0 cm
Bed diameter D _R	2,5 cm	1,0 cm	2,5 cm
Ratio L/D _R	7,76 cm	18,0 cm	28,0 cm
Catalyst mass	20,0 g	5,0 g	196,0 g
Μάζα αραιωτικού	105,0 g	9,0 g	356,0 g
Flow	20 - 180 g / h	130 - 700 g / h	800 - 3.500 g / h
Free fatty acids Input	2,91 - 3,03 %	51,0 %	41,0 - 47,0 %
Molar ratio MeOH : FFAs	10:1	8:1	10:1
Space Velocity (WHSV)	1,0 - 9,0 h ⁻¹	26,0 - 140,0 h ⁻¹	4,1 - 17,9 h ⁻¹

* Ind. Eng. Chem. Res. 2007, 46, 5113-5121

FIXED BED TUBULAR REACTOR

- Homogeneous mixture, methanol full dissolved to oil (d mixture = constant)
- Isothermal reactor reaction in liquid phase
- Plug Flow Operation

TRIGLYCERIDES HYDROLYSIS REACTION

The reaction was considered as single stage

$$TGs + 3H_2O \xleftarrow{H^+}{} 3FFAs + GL$$
$$(-r_{TG})_{cat} = (k_{tg,cat}C_{TG}C_{H_2O} - k_{-tg,cat}C_{FFA}C_{GL})$$

SINGLE REACTION FIRST ORDER WITH RESPECT TO EACH REACTING COMPONENT

$$\frac{dF_{\text{FFA}}}{dz} = -\left(-r_{\text{FFA}}\right)_{\text{th}} \times A \times \varepsilon_{\text{L}} - \left(-r_{\text{FFA}}\right)_{\text{cat}} \times A \times \varepsilon_{\text{cat}} + \left(-r_{\text{TG}}\right)_{\text{cat}} \times A \times \varepsilon_{\text{cat}}$$

- Use of equilibrium constants from batch reactor
- A : reactor surface, ε_L : free reactor volume, ε_{cat} :catalytic bed porosity

678

207

185

- Fitting with Mathematical model using both FFAs esterification and TGs hydrolysis reactions
 - Excellent fitting to experimental values —

Esterification and TG Hydrolysis Model Predictions

Flow	Initial acidity	Experiment acidity	Predicted acidity
g/h	(%)	(%)	(%)
120.0	2.912	1,34	1,3599
60.0	2.912	0,96	0,9685
60.0	2.912	1,01	0,9857
20.0	2.912	0,69	0,6939
120.0	2.912	1,36	1,3595
180.0	2.912	1,66	1,6523

UGent/FCh13/2L

Reactor Volume: 20lt Temperature: 62 – 64 °C Catalyst: 1 wt.% KOH Alcohol: 6/1 MeOH

Glycerol Removal

FEED STOCKS Refined Soybean oil Neutralized Cottonseed oil

• Esterification of FFAs in the Oil matrix appear to be a viable solution for the treatment of acidic oils with FFAs > 1.5 wt %

- Homogeneous Acid Esterification is an effective process for simultaneous Esterification and Transesterification but the use and consumption of the catalyst is a serious drawback
- Esterification processes catalyzed by solid super acid catalysts appear to be the most promising and sustainable processes
- Esterification reactions produce water that hydrolyzes also the Triglyceride Molecules of the matrix oil
- High FFAs conversions can be achieved with removal of the produced water

Contributors for this presentation :

<u>Collaborators</u>	<u>Companies</u>
Pasias S.	Hellenic Petroleum Co.
Barakos N.	Motor Oil
Alexopoulos K.	Public Power Corporation
Louloudi A.	MINERVA
Aggelogiannaki E.	Soya Mills
	GF Energy